domingo, 12 de octubre de 2008

ESTRUCTURAS DE ACERO

Las resistencias en compresión y tensión son prácticamente idénticas y pueden hacerse variar dentro de un intervalo bastante amplio modificando la composición química o mediante trabajo en frío. Hay que tomar en cuenta que a medida que se incrementa la resistencia del acero se reduce su ductilidad y que al aumentar la resistencia no varía el módulo de elasticidad, por lo que se vuelven más críticos los problemas de pandeo local de las secciones y global de los elementos.

Por ello, en las estructuras normales la resistencia de los aceros no excede de 2500 kg/cm2, mientras que para refuerzo de concreto, donde no existen problemas de pandeo, se emplean con frecuencia aceros de 6000 kg/cm2 y para presfuerzo hasta de 20000 kg/cm2. La continuidad entre los distintos componentes de la estructura no es tan fácil de lograr como en el concreto reforzado, y el diseño de las juntas, soldadas o atornilladas en la actualidad, requiere de especial cuidado para que sean capaces de transmitir las solicitaciones que implica su funcionamiento estructural. Por ser un material de producción industrializada y controlada, las propiedades estructurales del acero tienen generalmente poca variabilidad.

Coeficientes de variación del orden de 10 por ciento son típicos para la resistencia y las otras propiedades. Otra ventaja del acero es que su comportamiento es perfectamente lineal y elástico hasta la fluencia, lo que hace más fácilmente predecible la respuesta de las estructuras de este material. La alta ductilidad del material permite redistribuir concentraciones de esfuerzos.

Las extraordinarias cualidades estructurales del acero, y especialmente su alta resistencia en tensión, han sido aprovechadas estructuralmente en una gran variedad de elementos y materiales compuestos, primero entre ellos el concreto reforzado y el presforzado; además en combinación con madera, plásticos, mampostería y otros. La posibilidad de ser atacado por la corrosión hace que el acero requiera protección y cierto mantenimiento en condiciones ambientales. El costo y los problemas que se originan por este aspecto son suficientemente importantes para que inclinen la balanza hacia el uso de concreto reforzado en algunas estructuras que deben quedar expuestas a la intemperie, como puentes y ciertas obras marítimas, aunque en acero podría lograrse una estructura más ligera y de menor costo inicial.

Tipos de Aceros y su resistencia (Articulo enviado por: Raul E. Mercedez M. Pais: España, Email: Prefiere anonimato)

VENTAJAS DEL ACERO DIMENSIONADO

1. Ahorro en el costo de instalación de Acero:

La merma de acero en obra son eliminadas,
El costo de Mano de Obra se reduce debido a que no se realiza la habilitación del fierro.
El costo financiero es inferior al no necesitar un gran monto inicial para la compra del fierro.

2. Ventaja Operativa en la obra:
Mejor aprovechamiento del personal
Mayor limpieza y mejor uso de espacio
Mayor velocidad de instalación del fierro.

3. Ventajas Administrativas:
Mayor capacidad para controlar el uso de acero
Consumo cercano al tipo “just in time” al recibir el producto con poco tiempo de anticipación a la colocación
Pago escalonado.

4. Asesoría Técnica (despiece de planos):
Asesoría en constructabilidad y proceso constructivo durante todo el desarrollo del proyecto.

ACERO DIMENSIONADO:OBRAS

Principales Obras con Acero Dimensionado

Año 2007:

Centro Comercial Real Plaza I y II – Trujillo.
Edifico Mac Gregor – PUCP.
Edificio Cementos Norte Pacasmayo.
Ampliación de Clínica Ricardo Palma en Av. Javier Prado.
Edificio Santo Toribio.
Edificio Novotel.
Intercambio Vial Av. Venezuela – Av. Universitaria.
Ampliación de Planta de refinamiento de Cajamarquilla – Votorantim.
Puente Billinghurst – Carretera Interoceánica.
Tanques de Almacenamiento Planta Backus – Motupe.
Tanques – Backus ATE.
Terrazas de San Felipe.
Hotel Paracas.
Edificio Capital.
Edificio Malecón Armendáriz.
Centro de Convenciones Colegio Médico del Perú.
Golf Los Incas.
Presa, túneles transandinos y canales – Olmos.
Edificio Imagina Reducto.
Edificio Parque San Felipe.
Conj. Residencial Monte Carmen.
Edificio Brezan.
Edificio los Castaños.
Edificio Residencia el Mirador.
Planta de generación de energía - Set Chillón.
Edificio Residencial Santa Rosa.
Condominio Plaza del Pacifico.
Aventia del campo.
Sodimac en Av. Tacna.
Nueva Sede Universidad Cayetano Heredia.
TopiTop – Planta en Lurín.

Año 2008:

Centro Comercial Real Plaza – Huancayo.
Estación Central Grau.
Planta de Licuefacción Pampa Melchorita.
Condominio Parque Huaylas.
Edificio Alto Caral.
Intercambio Vial Av. Colonial – Av. Universitaria.

Acero Dimensionado

Etapas del Servicio
El servicio consta de tres etapas:

1. Elaboración de planos con el detalle de la instalación de acero
ACEROS AREQUIPA ha suscrito una alianza estratégica de outsourcing con SOLMACO, empresa de ingeniería especializada en diseño e instalación de acero estructural, para brindarle asistencia técnica de calidad internacional.

Con los planos estructurales del cliente, SOLMACO desarrolla la lista de despiece y los planos de forma debidamente codificados. La información del proceso constructivo, los cambios de planos y el cronograma de avance, deben ser proporcionados por el cliente para asegurar el abastecimiento oportuno del producto.

2. FabricaciónCon el visto bueno del cliente a los planos de detalle de instalación, se inicia el proceso de fabricación optimizando cortes y dobleces y asesorando al cliente en la optimización del proceso constructivo de la obra.

El control de calidad del proceso productivo permite ofrecer un producto que cumple con las mayores exigencias de las diversas obras de construcción civil.
El proceso industrial de ACEROS AREQUIPA establece tolerancias dimensiónales estrictas, superiores a las utilizadas normalmente en obra, lo que asegura la calidad del producto y la total satisfacción del cliente.

3. Empaquetado y entrega en obra

El empaquetado y entrega de material en obra están diseñados pensando en las necesidades de almacenamiento e instalación de cada obra, por ello ofrecemos un empaquetado por aplicación que contiene todo lo necesario para armar un elemento estructural.

Los camiones grúas entregan los paquetes puesto en obra, facilitando la descarga del material y estos a su vez son entregados debidamente organizados con etiquetas metálicas codificadas que facilitan la identificación de las piezas, junto con los planos de Detalle de Instalación.

NORMALIZACION DE LAS DIFERENTES CLASES DE ACERO

Como existe una variedad muy grande de clases de acero diferentes que se pueden producir en función de los elementos aleantes que constituyan la aleación, se ha impuesto, en cada país, en cada fabricante de acero, y en muchos casos en los mayores consumidores de aceros, unas Normas que regulan la composición de los aceros y las prestaciones de los mismos.

Por ejemplo en España actualmente están regulados por la norma UNE-EN 10020:2001 y antiguamente estaban reguladas por la norma UNE-36010.
Existen otras normas reguladoras del acero, como la clasificación de AISI (de hace 70 años, y de uso mucho más extenso internacionalmente), ASTM, DIN, o la ISO 3506.
A modo de ejemplo se expone la clasificación regulada por la norma UNE-36010, que ya ha sido sustituida por la norma UNE-EN10020:2001, y están editadas por AENOR:

Norma UNE-36010

Artículo principal: UNE-36010

La norma española UNE-36010 es una normalización o clasificación de los aceros para que sea posible conocer las propiedades de los mismos. Esta Norma indica la cantidad mínima o máxima de cada componente y las propiedades mecánicas que tiene el acero resultante.
En España, el Instituto del Hierro y del Acero (IHA) creó esta norma que clasifica a los aceros en cinco series diferentes a las que identifica por un número. Cada serie de aceros se divide a su vez en grupos, que especifica las características técnicas de cada acero, matizando sus aplicaciones específicas. El grupo de un acero se designa con un número que acompaña a la serie a la que pertenece. La clasificación de grupos por serie, sus propiedades y sus aplicaciones se recogen en la Tabla siguiente.

Clasificación de los Aceros según la Norma UNE-36010


Serie 1
Grupo 1


Acero al carbono.
Son aceros al carbono y por tanto no aleados. Cuanto más carbono tienen sus respectivos grupos son más duros y menos soldables, pero también son más resistentes a los choques. Son aceros aptos para tratamientos térmicos que aumentan su resistencia, tenacidad y dureza. Son los aceros que cubren las necesidades generales de la Ingeniería de construcción tanto industrial como civil y comunicaciones.

Grupos 2 y 3
Acero aleado de gran resistencia

.Grupo 4
Acero aleado de gran elasticidad.

Grupo 5 y 6
Aceros para cementación.

Grupo 7
Aceros para nitruración.

Serie 2
Grupo 1


Aceros de fácil mecanización.
Son aceros a los que se incorporan elementos aleantes que mejoran las propiedades necesarias que se exigen las piezas que se van a fabricar con ellos como, por ejemplo, tornillería, tubos y perfiles en los grupos 1 y 2. Núcleos de transformadores y motores en los aceros del grupo 3, piezas de unión de materiales férricos con no férricos sometidos a temperatura en el grupo 4, piezas instaladas en instalaciones químicas y refinerías sometidas a altas temperaturas los del grupo 5.

Grupo 2
Aceros para soldadura.

Grupo 3
Aceros magnéticos.

Grupo 4
Aceros de dilatación térmica.

Grupo 5
Aceros resistentes a la fluencia.

Serie 3
Grupo 1


Aceros inoxidables.
Estos aceros están basados en la adición de cantidades considerables de cromo y níquel a los que se suman otros elementos para otras propiedades más específicas. Son resistentes a ambientes húmedos, a agentes químicos y a altas temperaturas. Sus aplicaciones más importantes son para la fabricación de depósitos de agua, cámaras frigoríficas industriales, material clínico e instrumentos quirúrgicos, pequeños electrodomésticos, material doméstico como cuberterías, cuchillería, etc..

Grupos 2 y 3
Aceros resistentes al calor.

Serie 5
Grupo 1


Acero al carbono para herramientas.
Son aceros aleados con tratamientos térmicos que les dan características muy particulares de dureza, tenacidad y resistencia al desgaste y a la deformación por calor. Los aceros del grupo 1 de esta serie se utilizan para construir maquinaria de trabajos ligeros en general, desde la carpintería y la agrícola (aperos). Los grupos 2,3 y 4 se utilizan para construir máquinas y herramientas más pesadas. El grupo 5 se utiliza para construir herramientas de corte.

Grupos 2, 3 y 4
Acero aleado para herramientas.

Grupo 5
Aceros rápidos.

Serie 8
Grupo 1


Aceros para moldeo.

Son aceros adecuados para moldear piezas por vertido en moldes de arena, por lo que requieren cierto contenido mínimo de carbono que les dé estabilidad. Se utilizan para el moldeo de piezas geométricas complicadas, con características muy variadas, que posteriormente son acabadas en procesos de mecanizado.

Grupo 3

Aceros de baja radiación.

Grupo 4
Aceros para moldeo inoxidables.


IMPUREZAS Y DESGASTE EN EL ACERO

Impurezas en el acero

Se denomina impurezas a todos los elementos indeseables en la composición de los aceros. Se encuentran en los aceros y también en las fundiciones como consecuencia de que están presentes en los minerales o los combustibles. Se procura eliminarlas o reducir su contenido debido a que son perjudiciales para las propiedades de la aleación. En los casos en los que eliminarlas resulte imposible o sea demasiado costoso, se admite su presencia en cantidades mínimas.

· Al límite máximo aproximado: 0,04%. El azufre con el hierro forma sulfuro, el que, conjuntamente con la austenita, da lugar a un eutéctico cuyo punto de fusión es bajo y que, por lo tanto, aparece en bordes de grano. Cuando los lingotes de acero colado deben ser laminados en caliente, dicho eutéctico se encuentra en estado líquido, lo que provoca el desgranamiento del material.
Se controla la presencia de sulfuro mediante el agregado de manganeso. El manganeso tiene mayor afinidad por el azufre que el hierro por lo que en lugar de FeS se forma MnS que tiene alto punto de fusión y buenas propiedades plásticas. El contenido de Mn debe ser aproximadamente 5 veces la concentración de S para que se produzca la reacción.
El resultado final, una vez eliminados los gases causantes, es una fundición menos porosa, y por lo tanto de mayor calidad.

Aunque se considera un elemento perjudicial, su presencia es positiva para mejorar la maquinabilidad en los procesos de mecanizado. Cuando el porcentaje de azufre es alto puede causar poros en la soldadura.

· Fósforo: límite máximo aproximado: 0,04%. El fósforo resulta perjudicial, ya sea al disolverse en la ferrita, pues disminuye la ductilidad, como también por formar FeP (fosfuro de hierro). El fosfuro de hierro, junto con la austenita y la cementita, forma un eutéctico ternario denominado esteradita, el que es sumamente frágil y posee punto de fusión relativamente bajo, por lo cual aparece en bordes de grano, transmitiéndole al material su fragilidad.
Aunque se considera un elemento perjudicial en los aceros, porque reduce la ductilidad y la tenacidad, haciéndolo quebradizo, a veces se agrega para aumentar la resistencia a la tensión y mejorar la maquinabilidad

Desgaste

Es la degradación física (pérdida o ganancia de material, aparición de grietas, deformación plástica, cambios estructurales como transformación de fase o recristalización, fenómenos de corrosión, etc.) debido al movimiento entre la superficie de un material sólido y uno o varios elementos de contacto.
El desgaste sobre una superficie se puede cuantificar midiendo la pérdida de material según su desplazamiento relativo. Existen diferentes tipos de desgaste en dependencia de la situación encontrada. Varios modelos de desgaste incluyen adhesión, abrasión, fatiga y corrosión. El desgaste aumenta cuando existe presión y movimiento entre superficies. Esto es de gran importancia debido a que es un factor determinante en la vida y desempeño de las máquinas que están expuestas a este tipo de deterioro, pudiendo variar los costos de manera verdaderamente significativa.
La región más sensible a las agresiones del entorno es la superficie de un material. En comparación con otras causas de deterioro de un material, los problemas que afectan a la superficie debido al desgaste requieren un consumo energético mínimo debido a que son sólo los átomos de unas pocas capas superficiales y los enlaces que los unen entre sí, los que deben hacer frente a las fuerzas del entorno. El desgaste metálico es un fenómeno al cual están expuestos los metales, y que involucran el desplazamiento y el arranque de partículas en la superficie del metal, el tema de desgaste es algo complicado de estudiar debido a su complejidad y el número de factores necesarios para describirlo (Lansdown and Price, 1986). Además del efecto que tiene la lubricación en el proceso de desgaste, existen también otros factores muy importantes. Entre los distintos factores se tienen los metalúrgicos, los cuales involucran la dureza, tenacidad, constitución, estructura y composición química. También se tienen los factores operacionales, tales como los materiales en contacto, el modo y tipo de carga, la velocidad, la temperatura, la rugosidad superficial y la distancia recorrida. Por otro lado, se encuentran los factores externos como lo es la corrosión (Lansdown and Price, 1986). Según Lansdown and Price (1986): En general el incremento de la dureza disminuye el desgaste en un metal, pero la relación entre estos dos fenómenos es compleja. En el desgaste abrasivo hay evidencias de que el valor del desgaste en metales comercialmente puros y aceros tratados térmicamente es inversamente proporcional a su dureza. Hay una tendencia general de que cuando se incrementa la carga, se incrementa también el valor del desgaste; se habla también de un punto crítico en la mayoría de los sistemas, en los que más allá de haber un aumento en el valor del desgaste mas bien ocurre primero un incremento de la carga. El valor del desgaste puede cambiar considerablemente con el cambio de la velocidad, pero no existe una relación general entre el desgaste y la velocidad. Un incremento en la velocidad puede conducir a un incremento o decremento del desgaste dependiendo del efecto de la temperatura en la superficie del material.



Consultado de : http://es.wikipedia.org/

PROCESO DE FABRICACION


El hierro en estado puro no posee la resistencia y dureza necesarias para las aplicaciones de uso común. Sin embargo, cuando se combina con pequeñas cantidades de carbono se obtiene un metal denominado acero, cuyas propiedades varían en función de su contenido en carbono y de otros elementos en aleación, tales como el manganeso, el cromo, el silicio o el aluminio, entre otros.
El acero se puede obtener a partir de dos materias primas fundamentales:

•el arrabio, obtenido a partir de mineral en instalaciones dotadas de horno alto (proceso integral);
•las chatarras férricas,

que condicionan el proceso de fabricación. En líneas generales, para fabricar acero a partir de arrabio se utiliza el convertidor con oxígeno, mientras que partiendo de chatarra como única materia prima se utiliza exclusivamente el horno eléctrico (proceso electro siderúrgico).


La chatarraTras el proceso de reconversión industrial de la siderurgia en España se abandona la vía del horno alto y se apuesta de forma decidida por la obtención de acero a través de horno eléctrico.En este proceso, la materia prima es la chatarra, a la que se le presta una especial atención, con el fin de obtener un elevado grado de calidad de la misma. Para ello, la chatarra es sometida a unos severos controles e inspecciones por parte del fabricante de acero, tanto en su lugar de origen como en el momento de la recepción del material en fábrica.


La calidad de la chatarra depende de tres factores:


de su facilidad para ser cargada en el horno;
de su comportamiento de fusión (densidad de la chatarra, tamaño, espesor, forma, etc.);
de su composición, siendo fundamental la presencia de elementos residuales que sean difíciles de eliminar en el proceso del horno.


Atendiendo a su procedencia, la chatarra se puede clasificar en tres grandes grupos:

a)
Chatarra reciclada: formada por despuntes, rechazos, etc. originados en la propia fábrica. Se trata de una chatarra de excelente calidad.
b)
Chatarra de transformación: producida durante la fabricación de piezas y componentes de acero (virutas de máquinas herramientas, recortes de prensas y guillotinas, etc.).
c)
Chatarra de recuperación: suele ser la mayor parte de la chatarra que se emplea en la acería y procede del desguace de edificios con estructura de acero, plantas industriales, barcos, automóviles, electrodomésticos, etc.

Los controles a los que se somete la chatarra se producen en tres niveles:
1)
Inspección en origen por parte de personal especializado.
2)
Inspección visual en el momento de la descarga en puerto para material importado.
3)
Control de recepción en fábrica de forma exhaustiva por unidad de transporte, con independencia de la procedencia del material (nacional o importado), con el fin de eliminar todo elemento nocivo, materias explosivas o inflamables, material radiactivo, así como de todos aquellos metales no férreos, tierras, cuerpos extraños, etc.

Principios básicos para la obtención del aceroLa obtención del acero pasa por la eliminación de las impurezas que se encuentran en el arrabio o en las chatarras, y por el control, dentro de unos límites especificados según el tipo de acero, de los contenidos de los elementos que influyen en sus propiedades.Las reacciones químicas que se producen durante el proceso de fabricación del acero requieren temperaturas superiores a los 1000 ºC para poder eliminar las sustancias perjudiciales, bien en forma gaseosa o bien trasladándolas del baño a la escoria.
Principales reacciones químicas en el afino
Elemento
Forma de eliminación
Reacción química
Carbono
Al combinarse con el oxígeno se quema dando lugar a y gaseoso que se elimina a través de los humos.
Manganeso
Se oxida y pasa a la escoria.Combinado con sílice da lugar a silicatos.
Silicio
Se oxida y pasa a la escoria.Forma silicatos
Fósforo
En una primera fase se oxida y pasa a la escoria.En presencia de carbono y altas temperaturas puede revertir al baño.Para fijarlo a la escoria se añade cal formándose fosfato de calcio.
Azufre
Su eliminación debe realizarse mediante el aporte de cal, pasando a la escoria en forma de sulfuro de calcio. La presencia de manganeso favorece la desulfuración.


Proceso de fabricación del aceroEl proceso de fabricación se divide básicamente en dos fases: la fase de fusión y la fase de afino.Fase de fusiónUna vez introducida la chatarra en el horno y los agentes reactivos y escorificantes (principalmente cal) se desplaza la bóveda hasta cerrar el horno y se bajan los electrodos hasta la distancia apropiada, haciéndose saltar el arco hasta fundir completamente los materiales cargados. El proceso se repite hasta completar la capacidad del horno, constituyendo este acero una colada.



Fase de afino
El afino se lleva a cabo en dos etapas. La primera en el propio horno y la segunda en un horno cuchara.En el primer afino se analiza la composición del baño fundido y se procede a la eliminación de impurezas y elementos indeseables (silicio, manganeso, fósforo, etc.) y realizar un primer ajuste de la composición química por medio de la adición de ferroaleaciones que contienen los elementos necesarios (cromo, niquel, molibdeno, vanadio, titanio, etc.).El acero obtenido se vacía en una cuchara de colada, revestida de material refractario, que hace la función de cuba de un segundo horno de afino en el que termina de ajustarse la composición del acero y de dársele la temperatura adecuada para la siguiente fase en el proceso de fabricación.

El control del procesoPara obtener un acero de calidad el proceso debe controlarse en todas sus fases empezando, como ya se ha comentado, por un estricto control de las materias primas cargadas en el horno.Durante el proceso se toman varias muestras del baño y de las escorias para comprobar la marcha del afino y poder ir ajustando la composición del acero. Para ello se utilizan técnicas instrumentales de análisis (espectómetros) que permiten obtener resultados en un corto espacio de tiempo, haciendo posible un control a tiempo real y la adopción de las correcciones precisas de forma casi instantánea, lográndose así la composición química deseada.Los dos elementos que más pueden influir en las características y propiedades del acero obtenido, el carbono y el azufre, se controlan de forma adicional mediante un aparato de combustión LECO. Pero además de la composición del baño y de la escoria, se controla de forma rigurosa la temperatura del baño, pues es la que determina las condiciones y la velocidad a la que se producen las distintas reacciones químicas durante el afino.
La colada continuaFinalizado el afino la cuchara de colada se lleva hasta la artesa receptora de la colada continua donde vacía su contenido en una artesa receptora dispuesta al efecto.La colada continua es un procedimiento siderúrgico en el que el acero se vierte directamente en un molde de fondo desplazable, cuya sección transversal tiene la forma geométrica del semiproducto que se desea fabricar; en nuestro caso la palanquilla.La artesa receptora tiene un orificio de fondo, o buza, por el que distribuye el acero líquido en varias líneas de colada, cada una de las cuales dispone de su lingotera o molde, generalmente de cobre y paredes huecas para permitir su refrigeración con agua, que sirve para dar forma al producto. Durante el proceso la lingotera se mueve alternativamente hacia arriba y hacia abajo, con el fin de despegar la costra sólida que se va formando durante el enfriamiento.
Posteriormente se aplica un sistema de enfriamiento controlado por medio de duchas de agua fría primero, y al aire después, cortándose el semiproducto en las longitudes deseadas mediante sopletes que se desplazan durante el corte.En todo momento el semi producto se encuentra en movimiento continuo gracias a los rodillos de arrastre dispuestos a los largo de todo el sistema.Finalmente, se identifican todas las palanquillas con el número de referencia de la colada a la que pertenecen, como parte del sistema implantado para determinar la trazabilidad del producto, vigilándose la cuadratura de su sección, la sanidad interna, la ausencia de defectos externos y la longitud obtenida.
El horno de recalentamientoEl proceso comienza elevando la temperatura de las palanquillas hasta un valor óptimo para ser introducidas en el tren de laminación. Generalmente estos hornos son de gas y en ellos se distingues tres zonas: de precalentamiento, de calentamiento y de homogeneización. El paso de las palanquillas de una zona a otra se realiza por medio de distintos dispositivos de avance. La atmósfera en el interior del horno es oxidante, con el fin de reducir al máximo la formación de cascarilla.

El tren de laminación
Alcanzada la temperatura deseada en toda la masa de la palanquilla, ésta es conducida a través de un camino de rodillos hasta el tren de laminación.El tren de laminación está formado, como se ha indicado, por parejas de cilindros que van reduciendo la sección de la palanquilla. Primero de la forma cuadrada a forma de óvalo, y después de forma de óvalo a forma redonda. A medida que disminuye la sección, aumenta la longitud del producto transformado y, por tanto, la velocidad de laminación. El tren se controla de forma automática, de forma que la velocidad de las distintas cajas que lo componen va aumentando en la misma proporción en la que se redujo la sección en la anterior.
El tren de laminación se divide en tres partes:

Tren de desbaste: donde la palanquilla sufre una primera pasada muy ligera para romper y eliminar la posible capa de cascarilla formada durante su permanencia en el horno.

Tren intermedio: formado por distintas cajas en las que se va conformando por medio de sucesivas pasadas la sección.

Tren acabador: donde el producto experimenta su última pasada y obtiene su geometría de corrugado.

Las barras ya laminadas se depositan en una gran placa o lecho de enfriamiento, de donde es trasladado a las líneas de corte a medida y empaquetado, de donde pasa a la zona de almacenamiento y expedición.En el caso de la laminación de rollos, éstos salen del tren acabador en forma de espira, siendo transportados por una cinta enfriadora, desde la que van siendo depositadas en un huso, donde se compacta y se ata para su expedición, o bien se lleva a una zona de encarretado, donde se forman bobinas en carrete.
Durante la laminación se controlan los distintos parámetros que determinarán la calidad del producto final: la temperatura inicial de las palanquillas, el grado de deformación de cada pasada —para evitar que una deformación excesiva de lugar a roturas o agrietamientos del material—, así como el grado de reducción final, que define el grado de forja, y sobre todo el sistema Temcore de enfriamiento controlado.Del producto final se toman las muestras necesarias para ser sometidas a los ensayos de caracterización mecánica (tracción, doblado-desdoblado, fatiga y carga cíclica) y geométrica que les son de aplicación en función de las especificaciones establecidas por la norma conforme a la que ha sido fabricado.
En todo momento se conserva la trazabilidad del sistema, puesto que el material en rollo o en barra obtenido queda siempre identificado con la colada de la que procede, y el momento de su laminación.

CLASIFICACION DEL ACERO

Los diferentes tipos de acero se clasifican de acuerdo a los elementos de aleación que producen distintos efectos en el Acero

ACEROS AL CARBONO
Más del 90% de todos los aceros son aceros al carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre. Entre los productos fabricados con aceros al carbono figuran máquinas, carrocerías de automóvil, la mayor parte de las estructuras de construcción de acero, cascos de buques, somieres y horquillas o pasadores para el pelo.

ACEROS ALEADOS
Estos aceros contienen una proporción determinada de vanadio, molibdeno y otros elementos, además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono normales. Estos aceros se emplean, por ejemplo, para fabricar engranajes y ejes de motores, patines o cuchillos de corte.
Estos aceros de aleación se pueden subclasificar en :
· Estructurales
Son aquellos aceros que se emplean para diversas partes de máquinas, tales como engranajes, ejes y palancas. Además se utilizan en las estructuras de edificios, construcción de chasis de automóviles, puentes, barcos y semejantes. El contenido de la aleación varía desde 0,25% a un 6%.
· Para Herramientas
Aceros de alta calidad que se emplean en herramientas para cortar y modelar metales y no-metales. Por lo tanto, son materiales empleados para cortar y construir herramientas tales como taladros, escariadores, fresas, terrajas y machos de roscar.
· Especiales
Los Aceros de Aleación especiales son los aceros inoxidables y aquellos con un contenido de cromo generalmente superior al 12%. Estos aceros de gran dureza y alta resistencia a las altas temperaturas y a la corrosión, se emplean en turbinas de vapor, engranajes, ejes y rodamientos.

ACEROS DE BAJA DURACION ULTRA RESISTENTES

Esta familia es la más reciente de las cinco grandes clases de acero. Los aceros de baja aleación son más baratos que los aceros aleados convencionales ya que contienen cantidades menores de los costosos elementos de aleación. Sin embargo, reciben un tratamiento especial que les da una resistencia mucho mayor que la del acero al carbono. Por ejemplo, los vagones de mercancías fabricados con aceros de baja aleación pueden transportar cargas más grandes porque sus paredes son más delgadas que lo que sería necesario en caso de emplear acero al carbono. Además, como los vagones de acero de baja aleación pesan menos, las cargas pueden ser más pesadas. En la actualidad se construyen muchos edificios con estructuras de aceros de baja aleación. Las vigas pueden ser más delgadas sin disminuir su resistencia, logrando un mayor espacio interior en los edificios. Aceros inoxidables

ACEROS INOXIDABLES
Los aceros inoxidables contienen cromo, níquel y otros elementos de aleación, que los mantienen brillantes y resistentes a la herrumbre y oxidación a pesar de la acción de la humedad o de ácidos y gases corrosivos. Algunos aceros inoxidables son muy duros; otros son muy resistentes y mantienen esa resistencia durante largos periodos a temperaturas extremas. Debido a sus superficies brillantes, en arquitectura se emplean muchas veces con fines decorativos. El acero inoxidable se utiliza para las tuberías y tanques de refinerías de petróleo o plantas químicas, para los fuselajes de los aviones o para cápsulas espaciales. También se usa para fabricar instrumentos y equipos quirúrgicos, o para fijar o sustituir huesos rotos, ya que resiste a la acción de los fluidos corporales. En cocinas y zonas de preparación de alimentos los utensilios son a menudo de acero inoxidable, ya que no oscurece los alimentos y pueden limpiarse con facilidad.

(Fuente: Microsoft ® Encarta® 2000 y Capacitación CSH)

CARACTRERISTICAS MECANICAS Y TECNOLOGICAS DEL ACERO



· Su densidad media es de 7850 kg/m3.
· En función de la temperatura el acero se puede contraer, dilatar o fundir.
· El punto de fusión del acero depende del tipo de aleación. El de su componente principal, el hierro es de alrededor de 1510 ºC, sin embargo el acero presenta frecuentemente temperaturas de fusión de alrededor de 1375 ºC (2500 ºF). Por otra parte el acero rápido funde a 1650ºC
· Su punto de ebullición es de alrededor de 3000 ºC(5400ºF)
· Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para fabricar herramientas.
· Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres.
· Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es una lámina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño.
· Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico.
· Algunas composiciones y formas del acero mantienen mayor memoria, y se deforman al sobrepasar su límite elástico.
· La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más conocido sea el templado del acero, aplicable a aceros con alto contenido en carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza que evite fracturas frágiles. Aceros típicos con un alto grado de dureza superficial son los que se emplean en las herramientas de mecanizado, denominados aceros rápidos que contienen cantidades significativas de cromo, wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la dureza son Brinell, Vickers y Rockwell, entre otros.
· Se puede soldar con facilidad.
· La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.
· Posee una alta conductividad eléctrica. Aunque depende de su composición es aproximadamente de 3*106 S m-1. En las líneas aéreas de alta tensión se utilizan con frecuencia conductores de aluminio con alma de acero proporcionando éste último la resistencia mecánica necesaria para incrementar los vanos entre la torres y optimizar el coste de la instalación.
· Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos. En lo que respecta al acero inoxidable, al acero inoxidable ferrítico sí se le pega el imán, pero al acero inoxidable auténtico no se le pega el imán debido a que en su composición hay un alto porcentaje de cromo y níquel.
· Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo. Este aumento en la longitud puede valorarse por la expresión: δL = α δ t° L, siendo a el coeficiente de dilatación, que para el acero vale aproximadamente 1,2 • 10-5 (es decir α = 0,000012). Si existe libertad de dilatación no se plantean grandes problemas subsidiarios, pero si esta dilatación está impedida en mayor o menor grado por el resto de los componentes de la estructura, aparecen esfuerzos complementarios que hay que tener en cuenta. El acero se dilata y se contrae según un coeficiente de dilatación similar al coeficiente de dilatación del hormigón, por lo que resulta muy útil su uso simultáneo en la construcción, formando un material compuesto que se denomina hormigón armado. El acero da una falsa sensación de seguridad al ser incombustible, pero sus propiedades mecánicas fundamentales se ven gravemente afectadas por las altas temperaturas que pueden alcanzar los perfiles en el transcurso de un incendio.
FUENTE:HTTP://WWW.WIKIPEDIA.ORG

HISTORIA DEL ACERO


Es imposible determinar a ciencia cierta dónde y cómo el hombre descubrió el hierro, pero es cierto que su historia está estrechamente ligada con el desarrollo de la cultura y la civilización.Los metales inician su historia cuando el hombre se siente atraído por su brillo y se da cuenta de que golpeándolos puede darles forma y fabricar así utensilios tan necesarios para su supervivencia.La humanidad se sucede en Edades, a las que se ha dado nombres de metales, y cuando se cierran las Edades del Cobre y Bronce, a las que se atribuye una duración de 500 a 2000 años, comienza la Edad del Hierro.

Los primeros utensilios de hierro descubiertos por los arqueólogos en Egipto datan del año 3.000 a.C., y se sabe que antes de esa época se empleaban adornos de hierro. Los griegos ya conocían hacia el 1.000 a.C. la técnica, de cierta complejidad, para endurecer armas de hierro mediante tratamiento térmico.
Con la excepción del aluminio, el hierro se encuentra en la naturaleza en cantidades mayores que cualquier otro metal; se explota con métodos relativamente sencillos, y se puede trabajar y transformar tanto como se quiera. La razón del retraso en la aparición del hierro respecto al bronce hay que buscarla en el elevado punto de fusión del hierro puro, lo que hacía prácticamente imposible que una vez tratados sus minerales se pudiese ofrecer en forma líquida, separado de la escoria. Las primeras producciones se obtuvieron seguramente rodeando al mineral totalmente con carbón de leña con el que no era posible alcanzar la temperatura suficiente para fundir el metal, obteniéndose en su lugar una masa esponjosa y pastosa, mezcla de hierro y escoria, que había que martillar repetidamente al rojo vivo para eliminar la escoria y las impurezas.
Las aleaciones producidas por los primeros artesanos del hierro (y, de hecho, todas las aleaciones de hierro fabricadas hasta el siglo XIV d.C.) se clasificarían en la actualidad como hierro forjado. Para producir esas aleaciones se calentaba una masa de mineral de hierro y carbón vegetal en un horno o forja con tiro forzado. Ese tratamiento reducía el mineral a una masa esponjosa de hierro metálico llena de una escoria formada por impurezas metálicas y cenizas de carbón vegetal. Esta esponja de hierro se retiraba mientras permanecía incandescente y se golpeaba con pesados martillos para expulsar la escoria y soldar y consolidar el hierro. El hierro producido en esas condiciones solía contener un 3% de partículas de escoria y un 0,1% de otras impurezas. En ocasiones esta técnica de fabricación producía accidentalmente auténtico acero en lugar de hierro forjado. Los artesanos del hierro aprendieron a fabricar acero calentando hierro forjado y carbón vegetal en recipientes de arcilla durante varios días, con lo que el hierro absorbía suficiente carbono para convertirse en acero auténtico.

La evolución tecnológica orientó sus esfuerzos en tratar de aumentar la temperatura a la que se sometía al mineral de hierro, por medio de la utilización de hornos en los que se introducía una mezcla de mineral y carbón vegetal, lo que se traducía en un aumento de producción y en la lógica economía del sistema.Sin embargo, cuando estos hornos se calentaban en exceso el mineral pasaba de la forma pastosa a la líquida pero con un contenido en carbono tan alto que no permitía la forja. Este producto era en principio no aprovechable, y requería un “afino”, término que se ha conservado hasta hoy en día y que se emplea para describir el proceso de transformación del hierro colado al acero.
Con el paso del tiempo, se fue comprobando que la obtención accidental del hierro colado no era una desgracia, sino que por el contrario se trataba de una materia prima mejor para obtener posteriormente el acero, con todas las ventajas técnicas y económicas que implica el proceso.Para llegar a este punto fue preciso recorrer tres etapas fundamentales. La primera fue la sustitución del carbón de leña por la hulla y, más concretamente, por el coque. La segunda consistió en ir aumentando la altura de los hornos, gracias a las características resistentes del coque que permitía aumentar la carga de éstos y, en consecuencia, su producción. Y la tercera etapa recogería el conjunto de mejoras e innovaciones conducentes a avivar la combustión del horno, primero mediante el aumento de la ventilación y, posteriormente, mediante el calentamiento del aire soplado. El resultado final daría paso a la tecnología de los actuales hornos altos.
En 1855 se produce un hecho trascendental en la producción y el futuro del acero: el invento del convertidor ideado por Henry Bessemer, que supuso el paso revolucionario de la obtención del acero a partir del hierro producido en el alto horno. Este invento trascendental se completa por Thomas en 1873, al conseguir convertir el hierro colado, de alto contenido en fósforo, en acero de alta calidad mediante un convertidor con recubrimiento básico.A partir de entonces las innovaciones en la producción del acero se han ido sucediendo hasta nuestros días, gracias a la participación de figuras como las de Martín, Siemens, Héroult, los técnicos de Linz y Donawitz y tantos otros.
La producción moderna de acero emplea altos hornos que son modelos perfeccionados de los usados antiguamente. El proceso de refinado del arrabio mediante chorros de aire se debe al inventor británico Henry Bessemer, que en 1855 desarrolló el horno o convertidor que lleva su nombre. Desde la década de 1960 funcionan varios mini hornos que emplean electricidad para producir acero a partir de chatarra. Sin embargo, las grandes instalaciones de altos hornos continúan siendo esenciales para producir acero a partir de mineral de hierro.
En 2007 se utilizan algunos metales y metaloides en forma de ferro aleaciones, que, unidos al acero, le proporcionan excelentes cualidades de dureza y resistencia.


El uso intensivo que tiene y ha tenido el acero para la construcción de estructuras metálicas ha conocido grandes éxitos y rotundos fracasos que al menos han permitido el avance de la ciencia de materiales. Así, la Torre Eiffel, construida en París en 1889 es hoy día uno de los monumentos más visitados del mundo mientras el 7 de noviembre de 1940 el mundo asistió al colapso del puente Tacoma Narrows al entrar en resonancia con el viento. Ya durante los primeros años de la Revolución Industrial se produjeron roturas prematuras de ejes de ferrocarril que llevaron a William Rankine a postular la fatiga de materiales y durante la Segunda Guerra Mundial se produjeron algunos hundimientos imprevistos de los cargueros estadounidenses Liberty al fragilizarse el acero por el mero descenso de la temperatura, problema inicialmente achacado a las soldaduras.
En muchas regiones del mundo, el acero es de gran importancia para la dinámica de la población, industria y comercio.
Consultado de: http://es.wikipedia.org/

EL ACERO

Definición

El acero es la aleación de hierro y carbono, donde el carbono no supera el 2,1% en peso de la composición de la aleación, alcanzando normalmente porcentajes entre el 0,2% y el 0,3%. Porcentajes mayores que el 2% de carbono dan lugar a las fundiciones, aleaciones que .al ser quebradizas y no poderse forjar —a diferencia de los aceros—, se moldean.

La definición anterior, sin embargo, se circunscribe a los aceros al carbono en los que éste último es el único aleante o los demás presentes lo están en cantidades muy pequeñas pues de hecho existen multitud de tipos de acero con composiciones muy diversas que reciben denominaciones específicas en virtud ya sea de los elementos que predominan en su composición (aceros al silicio), de su susceptibilidad a ciertos tratamientos (aceros de cementación), de alguna característica potenciada (aceros inoxidables) e incluso en función de su uso (aceros estructurales). Usualmente estas aleaciones de hierro se engloban bajo la denominación genérica de aceros especiales, razón por la que aquí se ha adoptado la definición de los comunes o "al carbono" que amén de ser los primeros fabricados y los más empleados.

sirvieron de base para los demás. Esta gran variedad de aceros llevó a Siemens a definir el acero como «un compuesto de hierro y otra sustancia que incrementa su resistencia».

Por la variedad ya apuntada y por su disponibilidad —sus dos elementos primordiales abundan en la naturaleza facilitando su producción en cantidades industriales

los aceros son las aleaciones más utilizadas en la construcción de maquinaria, herramientas, edificios y obras públicas, habiendo contribuido al alto nivel de desarrollo tecnológico de las sociedades industrializadas.

Sin embargo, en ciertos sectores, como la construcción aeronáutica, el acero apenas se usa debido a que es un material muy pesado. El acero es casi tres veces más pesado que el aluminio (7,85/2,7).

FUENTE: http://es.wikipedia.org/wiki/Estructura